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ABSTRACT 
 
This paper proposes a new fundamental model of deformable 
objects for real-time and interactive applications. It is based on 
the mass-and-spring model, but in which the unit of elastic 
force definition for computation of dynamics is expanded from 
a spring to a volume element divided by the boundaries formed 
by mass-and-spring lattice.  Displacements of the vertices of 
the volume element are defined to decide the elastic forces 
similar to the mass-and-spring model.  Solving the equations 
of the equilibrium of internal force and moment of force derives 
them.  As a result, proper elastic forces are operated for 
restoring the natural shape even if the object is rather soft and 
easily deformed, although they are becoming improper ones 
with the increase of displacement of the spring in 
mass-and-spring models. As the calculation is performed 
numerically and approximately, a method of reducing the 
approximation error is also presented. 
 
Keywords: Elastic Object, Deformable, Real-time processing, 
Virtual manipulation, Computer Graphics. 
 
 

1. INTRODUCTION 
 
It is a general way for real-time and interactive simulation of 
deformable objects to establish equations of motion locally at 
every mass point in the mass-and-spring model and to solve 
them by the difference method [1,2]. It generates the state of 
objects at every point of constant time interval sequentially with 
a rather simple procedure.  However, it has a serious problem 
the elastic force does not properly work for the restoration of 
the object deformation, especially in cases with objects that are 
rather soft and extremely deformable.  As a result, divergence 
of oscillation or collapse of the goal of restoration occurs [3-5]. 
 
Roughly speaking, there are two reasons.  The first reason 
being is that the elastic force is too simply defined. It is 
proportional to the displacement of the spring.  It permits the 
amplitude of spring an infinite magnitude and leads the mass 
positions into disordered states.  The phenomenon often 
appears when an external force operates along the same 

direction of the spring.  Secondly, resultant force cooperated 
by multiple springs are not always suitable for the restoration of 
the object.  It is reasonable that the mass-and-spring model 
imitates the molecular microstructure that fundamentally 
defines behaviors of real objects, but simple magnification does 
not perform properly. For example, when the object is 
extremely compressed and springs are closely parallel to each 
other, the elastic force almost does not operate along the 
vertical direction of the springs in spite of it being important to 
restoration.  It is difficult to realize proper deformation with 
the spring-based force that acts only to keep a one-dimensional 
quantity of the natural length. 
 
We have already proposed an improved model of springs in 
which the amplitude has constraints to less than the natural 
length of the spring [4].  It works well with the first reason. 
But, it is difficult only for the improvement of springs to solve 
the second reason because it depends on the competition among 
multiple springs. 
 
In this time, we give a solution for it by expanding definition of 
the elastic force from a spring to a volume element that should 
be called a three dimensional spring.  For example, if you 
imagine a cubic lattice as a fundamental structure, the unit of 
the volume element becomes each cube.  The general 
procedure to define elastic forces is as follows.  At first, 
unique equilibrium positions of the mass points (vertices) are 
decided in each element under the following conditions. They 
form the natural shape of the element and displacement vectors 
of them from the current positions corresponding to internal 
forces of the element that perform restoration phenomena.  
And then, a set of elastic forces is decided as being in 
proportion to the displacement vectors of the vertices.  These 
procedures define proper forces for the restoration even if the 
object is extremely deformed.  In the paper, a method of 
reducing the approximation error is also presented because the 
equilibrium positions of the vertices are numerically and 
approximately calculated.  
 
Related Works 
There have been some studies about the issue of the 
mass-and-spring model.  Ref. 3 tries to avoid shrinking of the 



elastic body by including a geometric constraint that keeps the 
volume of the object.  It, however, does not always work as 
expected because it is merely a necessary condition for the 
shape restoration.  And, a real object often performs 
deformations in which the volume changes. 
 
Ref. 5 adopts the finite element method as in the definition of 
the stress.  It, however, means that the application range is 
considerably limited.  That is, the location of the object must 
be roughly fixed in the space and the degree of the deformation 
must be comparatively small. 
 
 

2. MASS-AND-SPRING MODELS 
 
In this section, the mass-and-spring model is explained, as it 
lays the foundation of the proposed model. 
 
Definition of Force 
Mass-and-spring model has the structure in which springs make 
trusses and mass points are placed in the nodes of the truss.  If 
elastic forces and damping forces are chosen as the internal 
force and gravity is chosen as the external force, Eq (1) 
specifies the vector of force Fi operating on the node i.  mi is 
mass of the node i and g is the gravity constant.  kij, Lij, and Dij 
are the elastic constant, natural length, and damping constant of 
the spring that is connecting the node i to node j.  pij and vij are 
the relative position and relative velocity of the node i with 
respect to any node j which is connected to node i: 
 
 
 

(1) 
 
 
 
 
 
 
 

The Method of Motion Generation 
Difference equations of the dynamic equations of motion that 
are established locally in each node specify the velocity Vi(T) 
and position Pi(T) of the node i at discrete time T sequentially 
as: 
 

(2) 
 
 

(3) 
 
 
Here, Fi(T) means the force operating on node i at time T.  ∆T 
is the time step of evolution.  Velocities and positions of nodes 
are renewed step by step in time.  ∆T must be sufficiently 
small compared to the cycle of spring oscillation for the reliable 
simulation. 
 
Collision Processing 
The collision processing is also important to the motion 
generation.  Here, a rebound of elastic objects is realized as a 
union of local rebounds of some nodes from a rigid surface.  
Every node that penetrates into the rigid region as a result of 
renewals in 2.2 is detected, and they are renewed extra with an 
ideal rebound from the rigid surface.  Restitution coefficient 
between the node and the surface controls the global intensity 
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(a) Proper stresses for the shape restoration 

(b) Stresses cooperated by three springs 
 

Fig. 1 A set of stresses operating on a regular triangle 
deformed extremely. 

(b) A spring placed in the vertical diagonal 

(c) A spring placed in the horizontal diagonal 
 

Fig. 2 A set of stresses operating on a regular square 
deformed extremely. 

(a) Proper stresses for the shape restoration 



of rebound.  The reliability of this method comes from that the 
rebound process takes far smaller time than the cycle of elastic 
oscillation.  The difference of the velocity of the node before 
and after the rebound is used to specify friction. 
 
Although, only collisions between nodes and a surface are 
currently detected, they will be expanded to that between edges 
and a surface or that between faces and a surface. 
 
 

3. SHAPE-BASED ELASTICITY 
 
Mass-and-Spring Model and Proposed Model 
In mass-and-spring models, the stress often becomes 
unexpected one for the shape restoration because of the 
competition among springs.  Fig. 1(b), for example, shows a 
set of stress that is generated in a deformed regular triangle 
made of three springs.  The stress operates as if the triangle 
drawn with bold lines is restored to the one drawn with thin 
lines (compare with Fig. 1(a)).  Figs. 2(b) and 2(c) show 
another example in which five springs are placed in all of the 
edges and one of two diagonals of a regular square.  The 
difference in the spring arrangement results the anisotropy of 
the stress. 
 
Here, if the stress that restores the deformed shape to the 
natural one directly as shown in Figs. 1(a) and 2(a) is chosen, 
proper restoration may be expected.  It is realized by 
modifying the definition of the stress in mass-and-spring 
models.  For example, if the object consists of a cubic lattice, a 
set of stresses is defined at every cube, while a pair of stresses 
is defined at every spring in mass-and-spring models.  Eq. (1) 
is expanded to Eq. (4) that specifies the vector of force Fi with 
elastic constant ke and damping constant De of any elastic 
element e that includes node i.  die is the displacement of the 
node i with respect to its equilibrium position that is explained 
in the following sections.  vie is the relative velocity of the 
node i with respect to the gravity velocity of the element e: 
 
 

(4) 
 
 
Definition of Equilibrium Shapes 
It is appropriate to assume that both the resultant force and the 
moment of force of the stresses internally generated in each 
element are equal to the zero vectors. This specifies a unique 
equilibrium shape of the element.  Eq. (5) expresses it with the 
relative vector Ri of the vertex i in the equilibrium shape and 
the relative vector ri of the vertex i in the deformed shape with 
respect to the gravity of the element:  
 
 
 

 
(5) 

 
 

This specifies {Ri} when {ri} is given.  It also specifies {die} 
in Eq. (4) as is equal to (ri−Ri). 
 
In the implementation, the initial values of {Ri} are registered 
as {Roi}, and {Ri} is defined as a result of the rotation of {Roi} 
around the gravity of the element.  Then, Eq. (5) is replaced 
with Eq. (6) that specifies the rotation matrix M when {ri} and 
{Roi} are given (Fig. 3):  
 
 

(6)  
 
 
Solution in Two-Dimensional Objects 
The shape of the element is a polygon in the case of 
two-dimensional objects.  If the object lies in the xy-plane, 
{Roi} and {ri} are expressed as: 
 
 
 

(7) 
 
 
 
And, matrix M becomes the rotation matrix around the z-axis: 
 
 
 

(8) 
 
 
 
By substituting the variables in Eqs. (7) and (8) for Eq. (6), Eq. 
(9) is derived: 
 
 
 

(9) 
 
 
 
This specifies cosθ and sinθ when {Roi} and {ri} are given.  
Successively, M and {Ri} are sequentially specified. 
 
Solution in three-dimensional objects 
Eq. (10) expresses matrix M in the case of three-dimensional 
objects with the unit vector of the rotation axis u =( ux, uy, uz ) 
and the rotation angle θ [6]: 
 
 
 

(10) 
 
 
 
Here, ux

2 + uy
2 + uz

2 = 1 is satisfied. 
 
As it is impossible to specify u and θ by solving Eq. (6) 
analytically, the approximate values of them are obtained.  If 
{Ri} at time (Τ−∆T) is adopted as {Roi} in Eq. (6), Eq. (6) is 
replace with Eq. (11): 
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Fig. 3 An equilibrium shape of a polygonal element.
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(11) 

 
 
Then, a condition of approximation that θ is nearly equal to 
zero may be applied.  By substituting the equations cosθ = 1 
and sinθ = θ for Eq. (10), matrix M is simplified as: 
 
 
 

(12) 
 
 
 
When {Ri(T−∆T)} and {ri(T)} are given as: 
 
 
 

(13) 
 
 
 
Eq. (11) is expanded as: 
 
 
 
 
 
 
 
 

(14) 
 
 

It is rearranged by the variables ux, uy, uz, and θ into: 
 
 
 
 
 
 
 
 
 
 
 

(15) 
 
 
 
 
It specifies the ratio of ux : uy : uz . Successively, u and θ are 
sequentially specified.  Finally, {Ri(T)} is specified as: 
 
 
 

(16) 
 
 
 
 
Experiments 
The proposed model is compared with the mass-and-spring 
model to confirm the advantage.  In Fig. 4, the upper figures 
and lower figures show scenes of dynamic simulation of the 
proposed model and the mass-and-spring model, respectively.  
It can be often seen in mass-and-spring model that some of the 
elements turn over because of insufficient stresses.  In the 
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Fig. 4 Comparisons between the proposed model (upper) and the mass-and-spring model (lower). 
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example of a two-dimensional object consisting of six triangles, 
the triangle that has the largest obtuse angle is easily turning 
over (Fig. 4(a) lower).  In the example of a three dimensional 
object consisting of 3 X 3 X 3 cubic elements, large forces 
received from the floor turn over all the elements in the nearest 
row to the floor (Fig. 4(b) lower).  When the ratio of elastic 
constant k to mass m that means the strength of elasticity is 
increased to 105, the problem has not appeared even in 
mass-and-spring models.  It, however, appears again when 
larger forces received from the manipulator operate.  The 
object is shrinking as a result of the repeated collision with the 
manipulator (Fig. 4(c) lower). 
 
 

4. REDUCTION OF APPROXIMATION ERRORS 
 
Solutions of equilibrium shapes include approximation errors in 
three-dimensional objects.  In this section, the influence of the 
errors to the result of dynamic simulation is evaluated and a 
method to decrease the errors is presented. 
 
Evaluation of Errors 
As approximation errors occur at the rotation axis u and the 
rotation angle θ in subsection 3.5, they result as if an extra force 
that rotates the element operated.  Therefore, acceleration of 
angle performed by the extra force is chosen as the criterion for 
evaluation.  If a rough value of the moment of inertia of the 
element I is permitted: 
 
 

(17) 
 
 
Acceleration of angle α is equal to the moment of force divided 
by I: 
 
 
 

(18) 
 
 
 
Row A in Table 1 shows average µ (α), standard deviation 
σ (α), and maximum max (α) of the acceleration of angle α for 
10 seconds from the moment when a single cubic element 
collides with the floor for the first time after falling from ten 
times the height of the size of the cube. Three kinds of values 
104, 105, and 106 that are comparatively realistic ones [4] are 
assigned to k/m.  The value of ∆T is fixed at 1/10 of the cycle 
of elastic oscillation in each case, which is small enough to 
succeed dynamic simulation.  In row B in which ∆T is fixed at 
1/100, the influence of approximation errors are smaller than in 
row A, because the value of θ approaches zero with the 
decrease of ∆T.  Computation time, however, increases with 
the inverse proportion to ∆T. 
 
Reduction of Errors 
The approximation values of {Ri(T)} derived in subsection 3.5 
are not certainly the true ones, but they are at least nearer to the 
true ones than {Ri(T−∆T)}; the derived {Ri(T)} is more 
desirable {Roi} than {Ri(T−∆T)}.  Therefore, it is considered 
that the procedure of solving Eq. (6) one time brings the 
approximation value of {Ri} closer to the true one.  In other 
words, the iteration of solving Eq. (6) converges {Ri} into the 

true solution with an initial value {Ri(T−∆T)}.  
 
Rows C and D in Table 1 show results in which the number of 
iteration is fixed at two and three, respectively, and ∆T is fixed 
at the same value as in Row A.  The influence of 
approximation errors is far smaller than in Row B that relies on 
the reduction of ∆T, and the rotate of the element performed by 
the approximation errors is usually constrained by the elements 
connected around.  Therefore, the number of iteration may be 
fixed at two in practice.  Then, the computation time of the 
proposed model is proportional to the number of elements as 
well as the mass-and-spring models.  In the experiment, the 
ratio of computation time of the proposed model to that of the 
mass-and-spring model was 1.05. 
 
 

5. CONCLUSIONS 
 
We have proposed a deformable model in which proper stresses 
operate for the shape restoration.  It is just the solution of the 
issue of mass-and-spring models mentioned in the beginning of 
this paper.  
 
In the mass-and-spring model, the shape of the element is 
difficult to be varied because the arrangement of springs must 
be changed depending on it.  On the other hand, the proposed 
model permits an arbitrary shape of the element.  That is also 
of great advantage in practical applications that necessarily 
handle free form objects. 
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A B C D
number of

iteration
1 1 2 3

∆ T 0 .006 0 .0006 0 .006 0 .006
µ (α ) 4 .52554 0 .032915 0 .000493 -
σ (α ) 4 .49862 0 .037503 0 .00211 -

max(α ) 30 .87597 0 .320008 0 .060352 0 .000001

A B C D
number of

iteration
1 1 2 3

∆ Τ 0 .002 0 .0002 0.002 0 .002
µ (α ) 1 .987712 0.030974 - -
σ (α ) 1 .68312 0.028445 0 .000001 -

max(α ) 9 .119262 0.157926 0 .000017 -

A B C D
number of

iteration
1 1 2 3

∆ Τ 0 .0006 0 .00006 0 .0006 0 .0006
µ (α ) 1 .301888 0 .005511 - -
σ (α ) 1 .297613 0 .005129 - -

max(α ) 7 .570902 0 .034552 - -

Table 1 The evaluation values of approximation errors. 
- means below lower limit of the measurable range.
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