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Abstract 
This paper proposes a fast computation elastic model.  It was constructed by a small 
number of elements.  Elastic objects are constructed in various sizes of elements.  
Small elements are laid out on the surface and larger elements are confined to the 
center.  A variety of element shapes and the way they fit into any voxel-based shape 
are presented here.  It effectively reduces the number of elements, and saves 
computation time.  This elastic element model is directed to the duties of real-time 
processing, performing consistent restoration, and being applicable to any shape of 
polyhedron elements. 
 
Keywords: elastic object, deformable model, element reduction, acceleration, real 
time, computer graphics 
 
 
1.  Introduction 
 
Physically-based modeling is an effective way to generate natural motion of 
deformable objects by defining a comparatively simple model that represents the 
local property of the object [1-3].  It has been developed in the field of computer 
animation for the purpose of generating real motion of deformation as an animation.  
Recently, its possibility is increasing to extend its real-time applications with high-
resolution object models, thanks to great advances in computation performance.  
However, even with great advances in computation performance, if properties are 
limited to linear elasticity, high-resolution models are still hungry for computation 
power.  It is necessary to construct objects with fewer elements. 
 



Another function is to construct any shape of objects.  Polygon-based models are 
popular ones in the field of real-time computer graphics.  It can flexibly represent 
any shape with fewer elements.  In general, the shape of elements should be 
equivalent in length in every direction for performing smooth deformation.  It should 
be close to regular polyhedrons.  Voxel-based models are another popular one which 
is often converted into polygon models for fast processing, if the object is non-
deformable.  However, it is suitable as deformable models, for it consists of the 
same size of cube.  Conversions between polygon models and voxel ones have been 
studied for a long time and aren’t complicated. Voxel models constructed from CT 
images are generally used in the field of medical imaging, one major field of study.  
Therefore, for now, the input shape is limited to a voxel model. 
 
Constructing simple models suitable to its purpose is a necessity in real-time 
processing.  For example, Promayon et al’s model supposes elastic objects like a ball, 
in which an elastic surface like rubber surrounds air [4].  It consists of mass-and-
spring lattice on the surface.  In addition, the internal volume is constrained to be 
constant.  As a result, this works to push every surface point to the outer sides.  It 
really acts well with little computation.  However, our interest is in the construction 
of general use and homogeneous elastic models rather than elastic models in which 
rubber-like models are arranged only on the surface.  Then, in such models, elastic 
elements should be arranged in whole not only on the surface.  Our study attempts 
the acceleration of computation in elements by employing variable sizes and 
reducing the number of elements. 
 
2.  Elastic Element 
 
2.1  Overview 
 
We also propose an original element model [5].  Many kinds of deformable models 
have been reported.  Under the conditions of real-time processing, their foundations 
are classified into either mass-and-spring model or simplex element in Finite 
Element Method (FEM).  Our model’s criterion is different from those, but is 
derived from them.  Restoration force is proportional to the displacements of 
vertices of the element from the reference position that gives its equilibrium shape.  
It is expanded from mass-and-spring models. In reference to displacement, its 
position is not given as a unit of length but as a unit of shape, this is common in 
FEM elements.  These three models almost all similarly define the same force, when 
object deformation is small.  However, our model does not have such serious 
problems like the other two models have, when object deformation is large. 
 
2.2  Problems in Mass-and-Spring Models 
 
Mass-and-spring model has an advantage that the implementation is easy, but the 
restoration force becomes more improper as the mass-and-spring lattice deforms.  
Especially, when the object is heavily compressed, almost all springs become 



parallel to each other. As a result, restoration force is depleted by competition 
among springs (Figure 1). 
 
Promayon et al’s model modifies this problem.  They choose some neighboring 
vertices to define a base plane in elements and decide the force of some other 
neighboring vertices to keep location relative to the plane.  This works well in their 
use of constructing elastic surfaces. Base planes should be laid along the object 
surface.  However, applying the model in general to any shape element is not 
recommended.  Deciding which vertices make the base plane is complicated. 
 
2.3  Problems in FEM Elements 
 
FEM element’s advantage is that physical properties of real material are directly 
reflected to the model.  It works well in such cases when its usage is limited to static 
behavior in stable layouts.  However, in general use, problems occur during the 
object’s rotation around itself.  If the reference shape is stable at all times, as rigid 
rotation deviates from the reference, force error rapidly becomes as large as the rigid 

Figure 1   For mass-and-spring models, the bold lines represent the deformed 
state, the dotted lines represent the reference shape, and the arrows represent 
restoration force.  In (b), you can see restoration force depleted in the vertical 
direction. 
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Figure 2  For simplex elements in FEM, unexpected force appears as large as 
its element rotation.  Inadequacies have to be overcome in order to apply this to 
object rotating cases. 



rotation (Figure 2).  This theory exists only under small deformative objects.  This 
problem will be solved by finding the ‘axis of principal stress’ and also by 
employing dynamic reference shapes which can chase deformed elements like ones 
being used in our model.  Even if this theory is considered, our model is superior in 
shape flexibility as shown in 2.4.   
 
2.4  Shape Flexibility 
 
Our model permits any shape of elements.  It is a great privilege constructing the 
proposed elastic model.  In FEM models, elements must be subdivided into the base 
shapes of triangle or tetra.  Mass-and-spring model’s problem, is how improper 
layout springs keep truss structure.  The resultant force is often inadequate even if 
the layout is completed, because of competition among springs. 
 
2.5  Stability 
 
Elastic elements sometimes strongly deform by itself, especially when too strong a 
force acts upon it. It may cause an inconsistent state, in which an element turns itself 
inside out.  Our model works to restore inconsistent states back to consistency, in 
any case.  It is an unavoidable necessity for other models to detect inconsistent states 
and to cope with them.  Although, this is not so easy, as computation time increases. 
 
2.6  Implementation 
 
This subsection easily explains our model.  It decides elastic force only depending 
on a simple assumption. Elastic force is proportional to displacements of vertices; 
they are not ones in springs but ones from reference shapes.  The reference shape’s 
location is decided in each element as is; both the resultant internal force and the 
moment of force of the internal stresses are equal to zero vectors. 
 

 (1) 
 
Here, vector Ri and ri are relative positions of vertex i in the reference shape and the 

Figure 3  Position vectors have respect to the center of gravity, in the original 
reference shape, rotated reference shape, and in the deformed shape. 
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deformed shape with respect to the center of gravity, respectively (Figure 3). Force 
is proportional to displacements with proportionality constant k. 
In the implementation, the initial values of { Ri } are registered as { Roi }, and { Ri } 
is defined as a result of the rotation of { Roi } around the center of gravity. 
 

 (2) 
 
When deformed shape { ri } and the initial reference shape { Roi } are given, 
rotation matrix M and the reference shape { Ri } are sequentially decided.  It 
specifies a unique reference shape location.  It means removing the rigid rotation 
component in deformation before deciding displacements.  Ref [5] presents a fast 
computation method of Equation (2) for 3D models.  This procedure has little 
complications, but as a result, its computation time is almost the same as mass-and-
spring models. 
 
It works equally as FEM elements when shapes are base ones, for exact 
compatibility, reference shapes should be distorted in Poison’s ratio.  More vertex 
shapes should be subdivided into base shapes, in every base shape, to evaluate 
distortions in more detail.  Our model regards distortion as being constant in 
polygons.  Preciseness is lost in deciding force, but it saves computation time. 
 
3. Gradational Resolution Model 
 
Considering that element reduction procedure is performed by replacing a few 
elements with one element that fills their domestic spaces.  If this procedure can be 
applied only to elements whose deformations are comparatively small, this might be 
an effective element reduction.  However, including procedures to search such 
elements spoils the acceleration of computation, because its computation time is 
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Figure 4  Elements in gradational 
resolution models. 

Figure 5  Variations in vertex layouts. 
Bold boundaries represent voxel object 
surfaces.



proportional to the number of elements.  It is difficult to predict deformation 
tendencies beforehand, but it can be said that deformation is large around contact 
points with rigid objects.  External force from rigid objects is far larger than internal 
force in elastic objects, and it works directly on the surface of elastic objects.  
Element’s sharing vertices also constrain neighboring elements’ deformation.  This 
works less on the surface where fewer neighboring elements are joined. 
 
Based on the above considerations, here we propose a model whose element sizes 
can be gradationally increased from the surface to the center.  It effectively saves 
computation time and maintains voxel’s original resolution on the surface. 
 

(a) (b)

Figure 6  The image illustration (a), and the concrete image illustration (b) of a 
gradational resolution model.  (b) is a magnified illustration of a corner of a 
cubic object. 

Figure 7  Implementation of manipulation environments. An elastic object can 
be manipulated by a rigid circle manipulator which is controlled by mouse. 



3.1 Implementation 
 
Vertex density in elements should be higher on the surface side than in the center, 
like one shown in Figure 4.  Followings simply explain construction procedure with 
this element model in a two dimensional case.  In the first step, voxel data is scanned 
in every neighboring 2x2-voxels independently to find surface 2x2-voxel ones, 
which includes boundaries of voxel object surface.  Figure 5 shows how to layout 
vertices on them, that has variation in the number of 1-voxels.   Then, all of the 
surface unit’s 1-voxels are changed into 0-voxels.  This procedure simultaneously 
prepares us for the next step.  After this procedure, 2x2-voxel-units consist of either 
four 0-voxels or four 1-voxels.  Then, procedure is repeated and 2x2 units become 
one voxel in the next step.  These procedures resulted in such a model shown in 
Figure 6.  Figure 7 is an example of a manipulation environment. 
 
3.2 Performance of element reduction 
 
The number of elements increases proportionally to the third power of object 
resolution.  Computation’s size is roughly proportional to the number of nodes.  A n 
by n by n cubic voxel object has 8 n3 nodes.  They are reduced into 26 n2 by the 
gradational resolution model, which has the same resolution as the surface.  In three 
dimensional cases, a sphere-like object, which has 552 voxel elements before 
reduction, can fit mostly into a 10x10x10 cubic volume.  It was reduced into 74 
elements in the experiment.  Table 1 shows real computation time running at PCs 
highest performance.  It can process about 100 element 3D objects in real time at 
this current performance speed ( k = 10000 ). 
 
3.3 Advantage of discretization 
 
The Euler method is a standard solution of motion computation, for it sequences 
dynamic motions, step by step.  For fast computation, time steps should be as large 
as possible with consideration to the cycle of simple harmonic motion, performed by 
elastic elements.  However, it delays internal force propagations in objects 
proportional to the number of medium elements. Our element reduction decreases 
this problem.  
 

CPU
Pentium4

(1.9G)
AthlonXP
(1900+)

computation time
per vertex(µs)

7.06 4.22

max element number
( k =10000)

68 114

Table 1 Real computation time and maximum element number available for real-
time processing. 



4. Conclusions 
 
We proposed a fast computation elastic model constructed by a small number of 
elements.  Elastic objects were constructed in various sizes of elements.  Small 
elements were laid out on the surface and larger ones were confined to the center.  A 
variety of element shapes and the way they fit into any voxel-base shape were 
presented here. It effectively reduced the number of elements, and saved 
computation time.  
 
The elements in Figure 4 make too rapid a gradation for high resolution models.  So, 
degrees in gradation should be controlled depending on applications. 
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